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Abstract

In 1736, in the town of Königsberg it was asked, “Is it possible to walk across the seven bridges

that span the river Pregel, which divide the town of Königsberg into four land masses, without

having to cross any bridge more than once?” Euler observed that it was unnecessary to consider

the size of the land masses, the length of the bridges or the route taken to traverse the bridges in

order to answer this question. He showed that the problem could be abstracted by considering

only the topology of the network, where a network is a group or system of interconnected things

or nodes: in this case the four land masses; and a topology is the way in which constituent

parts are interrelated or linked: in this case, whether there is a bridge between any two chosen

landmasses or not. The Königsberg bridge problem was the first problem in recorded history to

be formulated in graph theoretic terms, that is, as the topology of a network. Euler’s solution

to this problem is considered to be the first theorem of graph theory.

Today, 275 years later, graph theory is a vibrant field of research with remarkably diverse appli-

cations, including: molecular chemistry; developing vaccination strategies to prevent the spread

of viruses through human populations and computer networks; modelling complex ecological

systems; analysis of social networks; and the design of VLSI (very large scale integrated circuits)

of multiprocessors. In this thesis we consider questions in two separate but related research

areas in the field of graph theory, namely, extremal graph theory and connectivity.

Extremal graph theory is the study of graphs that are extremal, that is, maximal or minimal,

under some given constraints. In this thesis we focus on the problem of finding the maximum

number of pair-wise connections between the nodes in a network, given the number of nodes

and the length of the shortest cycle in the network. A graph that attains this bound is called

an extremal graph. Our interest in extremal graphs arose from the problem of determining the

structure of the most efficient and reliable networks. We provide constructions that produce

infinite families of extremal graphs. We examine the relationship between extremal graphs and

some other graphs that have been considered in the design of optimal networks. We develop an

algorithm that we use to establish new and improved lower bounds on the size of some extremal

graphs and determine the exact size of the extremal graphs for some particular parameters.

A graph is connected if there is a path, consisting of nodes and links, between any two nodes in

the graph. The ability to send and receive email via the Internet is dependent upon the Internet

being connected, that is, there is a path of computers and connections between the sender and

receiver of the email. The connectivity of a network is the number of nodes or links that must

be removed in order to partition the network into two or more components. High connectivity

of a network corresponds to the properties of fault tolerance and resilience under attack. In

this thesis we determine a number of sufficient conditions that ensure good connectivity of a

network.
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